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We present a thorough study of the effect of basis set choice and of the three-fragment counterpoise correction
for the basis set superposition error on the shape of proton-exchange energy surfaces. This has been investigated
by employing the correlated MP2 method and basis sets from cc-pVDZ to aug-cc-pVTZ quality. To understand
the effect of the correction and the overall accuracy of the different atomic basis sets, and to discover the
best-compromise basis set for large surface scans, we computed the shape difference function between corrected
and uncorrected results for the HF2

-, H3O2
-, H5O2

+, N2H5
-, and N2H7

+ systems. Our results show this function
to strongly depend on the system, although larger corrections are consistently observed when the more basic
fragments (NH2- and OH-) are involved. Suggestions on which basis set could be used for potential energy
surface scans are also given.

Introduction

Proton transfer and proton exchange are ubiquitous in nature.
These are involved in processes which range in complexity from
“simple” acid-base chemistry up to the catalytic activity of
the enzymes. Also, proton transfer from water solution to
carboxylate groups seems to be involved in the early steps of
protein refolding1 and denaturation.2 For these reasons, an
understanding of the mechanism underlying proton exchange
is needed in many branches of chemistry, and its importance
can be hardly overestimated. Notwithstanding such an impor-
tance, this mechanism still appears to be not completely
understood, and many experimental and theoretical efforts have
been carried out. To theoretically elucidate the various steps
involved in proton exchange, we believe that two fundamental
ingredients are needed. First, the potential energy surface (PES)
over which the process takes place must be accurately computed.
This would allow one to clarify the energetics of the process as
well as to shed some light on the different pathways involved.
Second, an accurate, truly quantum-mechanical simulation of
the proton behavior is needed. This last requirement has just
become mandatory after the suggestion that the thermally excited
vibrational state of the proton donor species can play a role in
water autoionization3 and, perhaps, in proton transfer when high
barriers separate reactants from products. Moreover, the topol-
ogy of the PES usually changes from a monostable surface to
a bistable one (see for instance ref 4) upon changing the center
of mass distance between the donor and acceptor molecules. If
so, a strong coupling between the proton motion and the relative
motion of the two fragments should be expected, and the use
of a quantum-mechanical method is mandatory.5

As to the PES, the ideal approach would require the use of
correlated ab initio methods to accurately compute “on the fly”
energy and energy gradients during a quantum-mechanical
simulation. Unfortunately, this task is, at the present, unfeasible
unless one resorts to density functional theory as the electronic
structure calculation method.6-8 However, even with this choice,
simulation time can hardly span more than a few picoseconds.
So, if statistically accurate quantities are sought (e.g., exchange
rates and thermodynamic functions), one is forced to resort to
a model potential to describe the system.4,9-11 Often, these model
potentials are built starting from physically motivated param-
etrized terms, and the parameters are optimized by fitting the
results of accurate supramolecular ab initio calculations. In this
respect, it is now clear that one must always correct the
supramolecular interaction energy value in order to minimize
the basis set superposition error (BSSE), unless an exceedingly
large basis set is used. Although various schemes have been
proposed in the past to tackle this issue, the most widespread
method is still the counterpoise (CP) correction.12 Not represent-
ing a definitive answer to the difficulties created by the BSSE,
CP is nevertheless a viable and effective way to approach this
problem.13 Also, CP gives the “exact” answer in the complete
basis set (CBS) limit; i.e., the correction decreases to zero while
the atomic basis set becomes complete, and an extrapolation
procedure could be devised. The CP correction is usually applied
in studies of weak molecular interactions where the molecules
can be considered as separate entities whose geometry changes
only slightly due to the intermolecular interaction. In contrast,
during a proton-exchange step, major changes in both the
electronic and nuclear structure take place, and this hinders the
possibility to use CP as it is. However, recently a way to correct
for the absence in the usual CP approach of the fragment
deformation energy has been proposed.14,15 This is accounted
for by computing the difference between the energy of an
isolated fragment in its own minimum geometry, and the energy
of the same fragment at the geometry in the complex.
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Another difficulty in applying the CP procedure in describing
a proton-exchange process is the fact that it is problematic to
designate which molecular fragment the proton belongs to. This
makes the selection of which basis functions belong to a given
fragment, the first step in the CP procedure, somewhat arbitrary.
Luckily, it seems possible to circumvent this difficulty by means
of a three-fragment extension of the CP procedure that has re-
cently been proposed.16,17In this method, the transferred proton
is considered as a fragment by itself with its own basis set. The
choice implies a different treatment for the exchangeable proton
than for the “fixed” ones if any is present (e.g., the four water
protons in H5O2

+). Nevertheless, it has been found16 that this
procedure introduces only small differences in both the equi-
librium geometry and the proton affinity of the protonated
isolated fragment when compared with the same quantities
obtained without correction but with a good quality basis set.

Using such a procedure, in ref 16 attention has been paid
mostly to the characterization of the minima of the PES for
H5O2

+, H3O2
-, and NH4

+H2O employing various basis sets.
Conversely, no effort has been devoted to study the effect of
such a procedure on the overall topology of the surface and on
the height of the potential barrier separating reactants from
products. Therefore, we feel that it is important to test the
performance of the many-body decomposition and the effect
of introducing the fragment relaxation energy for various
representative systems. This represents a mandatory step before
proceeding to compute the proton-exchange PES with any ab
initio method and fitting the results with an adequate analytical
form. With this aim in mind, we chose HF2

-,18-22 H3O2
-,23-27

H5O2
+,10,28-31 N2H5

-,7,32 and N2H7
+ 33-35 as representative

systems. All these systems have been previously studied with
different degrees of sophistication, H5O2

+ being perhaps the one
whose properties have been most extensively scanned. However,
for the remaining ones, accurate information on the behavior
of the proton-exchange PES including BSSE correction is still
scarce, so it also appears interesting to explore their energetics.

The outline of the paper is as follows. First, we summarize
the theoretical background of the counterpoise correction to the
basis set superposition error and detail our calculations. The
next section is devoted to presenting and discussing the results
for the various systems under study. Finally, the conclusions
drawn from the above results are reported.

Theoretical Background

In this section, the theoretical aspects of the counterpoise (CP)
correction of the basis set superposition error (BSSE) are briefly
summarized. We begin by considering the simplest case, i.e.,
the formation of complex AB from the isolated fragments A
and B. First, a few concepts are defined at the complete basis
set (CBS) limit. In the supramolecular approach, the formation
energy∆E of complex AB from the isolated fragments A and
B is given by

where EY(X) is the energy of species X at the equilibrium
geometry of species Y. Note that eq 1 is valid only if the
computational method is size-consistent. With reference to the
diagram in Figure 1, the formation energy can be decomposed
as follows:

where the deformation energyEdef is the energy needed to
deform the fragments from their equilibrium geometry to the
geometry they assume in the complex, and the approach energy
Eapp is the energy change due to the rearrangement of the
electron density when the two deformed fragments are brought
together to form the complex. Clearly,Edef is always non-
negative (it vanishes for atoms) andEapp is usually negative.

Of course, when real calculations are performed, one is
restricted to finite, incomplete basis sets. Within this limitation,
the simplest definition of formation energy is

where the greek superscripts denote that the energy of fragment
A is computed with its own basis set (the same for B), and the
complex energy is computed with the basis set resulting from
merging the basis sets of A and B. At the CBS limit, both the
R andâ basis sets are complete, and eq 3 correctly reduces to
eq 1, as shown in Figure 1. However, it is now widely
recognized that∆Euncorr is too negative because the complex
energy is computed with a larger basis set than the fragments
are. This is the BSSE, which can be corrected following the
counterpoise technique proposed by Boys and Bernardi,12 by
evaluating the formation energy as

where the fragments’ energy is computed with the merged basis
set at the geometry the fragments have in the complex. In eq 4,
all energies are computed within the same functional space and
can be directly compared. However, as can be seen from eq 2
and in Figure 1,∆EBB does not tend to∆E at the CBS limit;
rather, it tends toEappbecause of the neglect of the deformation
energy. Although the latter was not large in the first application
of the CP correction scheme, it was subsequently appreciated
that the deformation energy should be reinstated in the expres-
sion of the formation energy,36 so that it converges to∆E at
the CBS limit. The problem now arises of how the deformation

Figure 1. Pictorial representation of the energies involved in the
counterpoise correction of the basis set superposition error. The
complete basis set (CBS) limit formation energy∆E is shown (thick
arrow), along with its decomposition in deformation and approach
energies (thin arrows). Under the headingR|â, the finite basis set
approximation to the deformation energy is shown (dotted arrow). These
energy levels, computed using separately the basis sets of fragments
A and B, are involved in the definition of the uncorrected formation
energy∆Euncorr (long-dashed arrow). Under the headingRâ, the original
Boys-Bernardi formation energy∆EBB is shown (short-dashed arrow).
Note that here a deformation energy cannot be defined. At the far right
one can find the counterpoise-corrected formation energy∆ECP (dash-
dotted arrow) as now used. Its decomposition as∆ECP ) ∆EBB + Edef

is also shown.

∆Euncorr) EAB
Râ (AB) - EA

R(A) - EB
â(B) (3)

∆EBB ) EAB
Râ (AB) - EAB

Râ (A) - EAB
Râ (B) (4)

∆E ) EAB(AB) - EA(A) - EB(B) (1)
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energy should be computed with finite basis sets. The deforma-
tion energy cannot be rigorously computed with the joint basis
set since one does not know where the basis functions of, e.g.,
B should be centered when computingEA

Râ(A).37 Thus, any
expression of the formation energy including the deformation
energy contains energy terms computed with different basis sets.
Since the CBS limit does not depend on the finite basis set
actually employed, one is free to choose the most appropriate
basis set and, in principle, computational method. Notwithstand-
ing this freedom, it seems that the most widespread choice is
to use the same computational method and the individual
fragment basis sets.14-17,36,38-40 We therefore arrive at the
following expression for the formation enery of the complex:

The seven terms on the right-hand side of the first equality can
be grouped in two ways in order to (i) emphasize that∆ECP

amounts to adding the deformation energy to∆EBB and (ii) show
that the BSSE correction is carried out separately for each
individual fragment, thus highlighting the assumption of addi-
tivity underlying the counterpoise correction scheme. Besides,
the latter form clearly shows that∆ECP tends to∆E since the
terms in square brackets vanish at the CBS limit.

Until now, we have considered the formation of a complex
from two fragments. Of course, the energetics of reactions
involving more fragments (e.g., atomization energy) are also
of interest. In these cases, a generalization of the above equations
is needed. Two different correction schemes have been proposed
which hold for any numberN of fragments. In the hierarchical
scheme,38 the interaction energy is decomposed into 1-, 2-, ...,
N-body components, and the BSSE is corrected for in each of
the components. Unfortunately, the number of independent
calculations needed to implement this scheme grows exponen-
tially with N. Turi and Dannenberg36 proposed a more feasible
approach which exploits the additivity assumption by neglecting
correction in the 2-, 3-, ...,N-body energy components. The
resulting formula is a plain generalization of eq 5 toN
fragments:

where the fragments Fk (k ) 1, 2, ...N) with basis setæk form
the complex Z with basis setú ) æ1 x æ2 x ... x æN. For N
fragments,∆ECP can be obtained from 3N + 1 independent
calculations. Note that only the first 2N + 1 terms on the right
side of eq 6 depend on the complex geometry. The number of
calculations needed to compute the BSSE correction within the
two schemes is reported in Table 1. The two schemes are
computationally (and theoretically) equivalent forN ) 2, but
the Turi-Dannenberg scheme enables one to save much
computational effort already forN ) 3, especially when
performing PES scans.

Computational Details

As representative systems for proton transfer, we chose HF2
-,

H3O2
-, H5O2

+, N2H5
-, and N2H7

+, which cover a broad range

of relative acidity. As detailed above, we consider these as
systems comprising three units: an exchangeable proton and
two identical base units (F-, OH-, H2O, NH2

-, and NH3,
respectively). All computations were carried out at the Hartree-
Fock level, followed by second-order Møller-Plesset (MP2)
correlation energy correction by the Gaussian98 program suite.41

Core electrons were frozen at the MP2 step. We carried out
calculations employing the following standard basis sets: cc-
pVDZ, cc-pVTZ, aug-cc-pVDZ, and aug-cc-pVTZ. Each point
on the PES has been obtained by a full geometry optimization,
except for the distanceR between the heavy atom (F, O, or N)
of the donor unit and the exchangeable proton (cf. Chart 1).
Such distances have been typically scanned from 0.9 to 2.0 Å
(0.025 Å step), thus obtaining a PE curve, i.e., a one-dimensional
section of the PES representative of a possible proton exchange
from the donor fragment to the acceptor. Clearly, the structural
meaning of the fixed distance changes during the scan. For
instance, consider the H5O2

+ system sketched in Chart 1. In
the first part of the scan,R is small and we actually fix the
length of one of the three O-H bonds within the hydronium
ion and optimize all the rest, so that the other fragment (i.e.,
the water molecule) is fully optimized, including the H2OH+‚‚‚
OH2 distance. Conversely, in the last part of the scan,R is large
and the first fragment has become a water molecule. Hence,
we are now fixing the H2O‚‚‚HOH2

+ distance and optimizing
all the rest, so that the hydronium ion is fully optimized. This
is why the potential energy curves reported below are not
symmetrical.

Calculations of the fragments at the complex geometry were
performed both with the whole basis set and with the basis set
of the fragment itself. Since we are dealing with proton-transfer
reactions, we employ a three-fragment formalism where the
exchangeable proton is considered an independent entity, as
described in the previous section. The fragment choice is
trivial: one fragment is the exchangeable proton, and the other
two are the identical base units exchanging the proton. Of
course, the proton has its own basis set but bears no electron,
so the summations in the right member of eq 6 are restricted to

∆ECP ) EAB
Râ (AB) - EAB

Râ (A) - EAB
Râ (B) + EAB

R (A) +

EAB
â (B) - EA

R(A) - EB
â(B)

) ∆EBB + Edef
R (A) + Edef

â (B)

) ∆Euncorr+ [EAB
R (A) - EAB

Râ (A)] +

[EAB
â (B) -EAB

Râ (B)] (5)

∆ECP ) EZ
ú(Z) - ∑

k)1

N

EZ
ú(Fk) + ∑

k)1

N

EZ
æk(Fk) - ∑

k)1

N

EFk

æk(Fk) (6)

TABLE 1: Number M of Independent Calculations Needed
for BSSE Correction within the Hierarchical and the
Turi -Dannenberg Schemesa

M(P ) 1) M(P)

N hierarchical Turi-Dannenberg hierarchical Turi-Dannenberg

2 7 7 5P + N 5P + N
3 22 10 19P + N 7P + N
4 129 13 125P + N 9P + N

a N denotes the number of fragments andP the number of structures
of the complex one is dealing with, e.g., in a PES scan.

CHART 1. Sketch Representing the Geometry of
Complex H5O2

+ at the Beginning (Top) and toward the
End (Bottom) of the Proton Transfer from the Donor
(Left) to the Acceptor (Right)a

a The distance that is fixed during the scan (R) is denoted by a thick
line.
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the base units, but the merged basis set does contain the atomic
orbitals of the exchangeable proton.

Results and Discussion

We present and discuss first the general characteristics of the
PE curve shape for proton transfer, then the details and
peculiarities of the individual proton-exchanging complexes. We
recall that the scope of this paper is not the accurate energetic
and structural characterization of the complexes. In the long
run, we are interested in quantum and semiclassical simulations
of proton-transfer processes which need large PES scans. These
simulations do not require accurate absolute values of the
interaction energy, but rather an accurate shape of the PES.
Indeed, potential energy curves are usually scaled so that their
minimum is the zero of the energy scale. In conclusion, our
aim is to answer the following questions: (i) How is the PES
shape affected by the basis set choice and the BSSE? (ii) Which
basis set is the best compromise between accuracy and
computational speed?

General Characteristics of the PE Curve Shape.The PE
curves for the studied proton-transfer reactions may exhibit both
single- and double-well shape. In the former case, shape analysis
is straightforward since it amounts to studying the position of
the minimum and the wall slope. For double-well curves, one
has to take into account the position of the two minima and the
maximum, the barrier height, and the slope of the external
repulsive walls.

The basis set choice and the 3fCP correction may, in principle,
affect all of the above-mentioned features of the PE shape. With
reference to proton exchange between identical base units A
and A′, we can define the shape difference as

whereC ) min(∆Euncorr) - min(∆ECP) > 0 is a constant vertical
offset, and the terms in square brackets are the contributions of
the A and A′ fragments to the counterpoise correction. Note
that although the 3fCP correction∆ECP - ∆Euncorr is always
non-negative, the shape difference may take either sign. Where
∆s > 0, the 3fCP corrected curve lies above the uncorrected
one, and vice versa, once the curves have been energetically
offset so that their minima are at zero level.

Typical examples of the 3fCP correction as a function ofR
are shown are Figure 2. The part of the 3fCP correction allotted
to the donor fragment monotonically decreases with increasing
R since the overlap with the basis functions of the other two
fragments and the deformation the latter induces become smaller.
Of course, they must vanish forR f ∞. This curve may be
quasi-linear or show concavity toward either higher and lower
energy. Such different shapes may be observed even within a
single complex with different basis sets. The part of the 3fCP
correction allotted to the acceptor fragment monotonically
increases with increasingR and is generally concave toward
lower energy, except for very shortR values in some cases. At
variance with the donor fragment contribution, that of the
acceptor tends to level off rather early, when the basis set
augmentation and the structural deformation effects caused by
the presence of the donor fragment become negligible, but it
does not vanish forR f ∞, since the effects due to the nearby
proton are still present. This early leveling causes the overall
3fCP correction to have a negative slope for moderately large
Rand the shape difference∆s to become negative in this region.
Therefore, the 3fCP-corrected PE curve shows a minimum with

a less steep wall at largerR (or a broader rightmost potential
well in the case of double-well curves).

The shape of the donor part of the overall 3fCP correction
depends on the details of the fragments 3fCP correction. In the
simplest case, the overall 3fCP correction has a maximum near
the R value where the complex has a symmetric structure and
slopes downward for smallerR (type I). The potential well is
thus made broader in the case of single-well curves. For double-
well curves, the external walls of both wells are less steep. In
other cases, the interplay between the two contributions is such
that the 3fCP correction rises at short enoughR. The maximum
may be followed at shorterR by a minimum (type II), or it
may be replaced by an inflection point (type III), usually near
the symmetric structure. In this case,∆s is bound to become
positive at shortR, and there the potential well becomes more
repulsive.

The behavior of∆s in the centralR range depends on the
interplay of many factors. However, in most cases a maximum
in ∆s is observed in this range, leading to well broadening in
the single-well case and to higher barriers in the double-well
case. If an inflection point is present, the 3fCP-corrected curve
is more asymmetric than the uncorrected one.

The [F‚‚‚H‚‚‚F]- Complex. In this case, all fragments are
atomic in nature, so the deformation energy vanishes and∆ECP

) ∆EBB. The PE curves and∆s for the [F‚‚‚H‚‚‚F]- complex
computed with the cc-pVDZ, cc-pVTZ, aug-cc-pVDZ, and aug-
cc-pVTZ basis sets are shown in Figure 3. All the uncorrected
curves show a single minimum atR0 ) 1.150 Å, corresponding
to a symmetrical structure, but differ in the width of the well,
the two aug-cc curves having a less steep walls. The shape
difference is of type I for cc basis sets. In these cases,∆s < 0
except for a narrow range aboutR ) R0, so the potential well
is made broader on either side. For the aug-cc sets, type III is
observed and∆s> 0 for R< R0, so the potential well is broader
at largeR but slightly steeper at smallR. Notwithstanding the
actual 3fCP correction is largely different between augmented
and nonaugmented basis sets (this is an anionic system),∆s is
small and not very different among the four basis sets. As to
the relative shape of the corrected PE curves, we see a behavior
similar to that of the uncorrected ones; namely, they present a
single minimum, and the aug-cc-pVDZ and aug-cc-pVTZ results
show less steep walls on both sides of the well than their cc-
pVDZ and cc-pVTZ counterparts. For instance, the difference
between the offset cc-pVDZ and aug-cc-pVDZ amounts to about
1.3 kcal/mol atR ) 1.4 Å. From the relative accuracy of the

∆s ) [∆ECP - min(∆ECP)] - [∆Euncorr- min(∆Euncorr)]

) [EAB
R (A) - EAB

Râ (A)] + [EAB
â (A′) - EAB

Râ (A′)] + C (7)

Figure 2. Schematic representation of the three-fragment counterpoise
correction of the nonproton fragments and of the proton-exchanging
complex. (Left) Contributions from the acceptor (thick line) and the
donor (thin lines) base fragment. The latter ones illustrate the three
possible concavities observed: concave toward low energy (type I, solid
line); quasi-linear (type II, dashed line); and concave toward high energy
(type III, dotted line). (Right) The three possible shapes for the
counterpoise correction of the proton-exchanging complex obtained as
the sum of the fragment contributions shown in the left panel. Each
PE curve may possess a single maximum (type I, solid line), a maximum
and a minimum (type II, dashed line), or an inflection point (type III,
dotted line).
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corrected curves, we can say that, for a large PES scan, one
should at least use the largest basis set employed in this work.

The [HO‚‚‚H‚‚‚OH]- Complex. In this system, the deforma-
tion energy is due simply to the change in the O-H bond length
within the hydroxyl ions. In Figure 4, the PE curves computed
with the four basis sets along with the correspondent∆s are
reported. Interestingly, the necessity of using basis sets contain-
ing diffuse functions to correctly describe an anionic system
shows itself off by inducing dramatic differences in the topology
of the proton-transfer PE curve for this complex. Whereas the
two uncorrected aug-cc PE curves present a double-well
potential (saddle at 1.225 Å), their cc counterparts predict a
single-well PE curve, with their minima located at 1.250 (cc-
pVDZ) and 1.225 Å (cc-pVTZ), respectively. The position of
the two minima of the aug-cc PE curves strongly depends on
the quality of the basis set. Specifically, the aug-cc-pVDZ
minima are located at shorter and longer distances than the aug-
cc-pVTZ ones when the proton is bound to the donor and to
the acceptor, respectively. Also, the barrier height (see Table
2) decreases by roughly 0.19 kcal/mol on going from aug-cc-
pVDZ (0.27 kcal/mol) to aug-cc-pVTZ (0.08 kcal/mol). A
similar behavior is found for the corrected PES, the corrected
barrier height decreasing from 0.32 to 0.13 kcal/mol, and the
location of the minima becoming closer. The shape difference
is of the type II for all the computed PE curves. Whereas for
the two aug-cc sets∆s > 0 for R < 1.4 and∆s < 0 for larger
R, such that the barrier is increased and the steepness of the
walls decreased, the two cc sets present a very small shape
difference in the regions around their minima. We notice that
the shape difference for the augmented basis sets introduces

small changes in the location of the two minima, displacing
them to largerR in both cases. This effect appears to be more
important for the smallest basis set. We also notice that the BB
correction scheme (data not shown) is in quite good agreement
with the full 3fCP correction for this system. As to the total
accuracy of the corrected PE curves, from our results it seems
that the aug-cc-pVDZ basis set is not flexible enough to allow
a total accuracy of, at least, 0.1 kcal/mol for this system, and
that the aug-cc-pVTZ or larger sets should be used.

The [H2O‚‚‚H‚‚‚OH2]+ Complex. In this system, three
degrees of freedom for each fragment are involved in the
relaxation process during the proton exchange. Figure 5 shows
the PE curves and∆s for this complex. From this picture, it
can be seen that all the PE curves have only a single well, a
feature that it is shared also with higher levels of theory, e.g.,
MP410 and CCSD(T),30 when large basis sets are used. All the
minima are located aroundR0 ) 1.2 Å. However, the uncor-

Figure 3. Shape difference and comparison between the potential
energy curves for the [F‚‚‚H‚‚‚F]- complex computed with four basis
sets. (Top) Uncorrected PE curves; (middle) 3fCP-corrected PE curves;
(bottom) shape differences.4, cc-pVDZ; 2, cc-pVTZ; O, aug-cc-
pVDZ; b, aug-cc-pVTZ.

Figure 4. Shape difference and comparison between the potential
energy curves for the [HO‚‚‚H‚‚‚OH]- complex computed with four
basis sets. (Top) Uncorrected PE curves; (middle) 3fCP-corrected PE
curves; (bottom) shape differences.4, cc-pVDZ;2, cc-pVTZ;O, aug-
cc-pVDZ; b, aug-cc-pVTZ.

TABLE 2: Uncorrected and 3fCP-Corrected Barrier
Heights (kcal/mol-1) for the Proton Transfer in the H 3O2

-,
N2H5

-, and N2H7
+ Systems for the Four Employed Basis

Setsa

system
correction
scheme cc-pVDZ cc-pVTZ

aug-cc-
pVDZ

aug-cc-
pVTZ

H3O2
- none 0.27 0.08

3fCP 0.32 0.13
N2H7

+ none 0.41 0.64 0.96 0.72
3fCP 0.94 0.94 1.02 0.89

N2H5
- none 1.20 1.75 3.90 3.80

3fCP 2.56 2.72 4.46 4.32

a The HF2
- and H5O2

+ systems show single-well potential.
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rected PE curve show different curvatures depending on the
basis set employed, with a tendency for the aug-cc-pVDZ results
to show less steep walls than the results for the other basis sets.
Although the main features do not change after the 3fCP
correction, a better agreement between cc-pVDZ and aug-cc-
pVDZ basis sets is found. A similar outcome is found also for
the cc-pVTZ/aug-cc-pVTZ pair. Therefore, in this cationic
system, the 3fCP scheme can correct for the absence of diffuse
functions but not for that of an additionalú subset. The shape
difference is of type III for the aug-cc-pVDZ set and of type II
for the other ones. Hence,∆s > 0 only for the aug-cc-pVDZ
set and forR < R0. The BB- and 3fCP-corrected curves are in
good agreement in the region around the potential minimum,
while they diverge at both small and large values ofR. As to
the overall accuracy of the 3fCP-corrected surfaces (see Figure
5), although the four PE curves are in good agreement with
respect to the position of the minimum of the potential with a
relative discrepancy better than 0.025 Å, our results clearly
indicate that the DZ quality basis sets are not flexible enough
to describe the walls of the well with an accuracy better than
0.1 kcal/mol. Conversely, the good agreement between of the
two TZ basis sets after the 3fCP correction, together with the
results shown in refs 10 and 30, indicates that the cc-pVTZ set
could give an accurate description of the proton-exchange
surface for this complex.

The [H2N‚‚‚H‚‚‚NH2]- Complex. The NH2
- fragments of

this complex present the largest proton affinity, and hence the
strongest basic behavior, among all the systems we studied.
Figure 6 shows PE curves and∆s for this system. All of the
uncorrected PE curves clearly show a double-well interaction
potential. However, they present large differences in both the

location of the minima at largerR and the barrier heights
between the two aug-cc and the two cc sets (see Figure 6). The
former basis sets give very close barrier heights (3.90 and 3.81
kcal/mol), whereas the cc sets are much lower and also more
dispersed (1.20 and 1.75 kcal/mol). The shape difference appears
to be of type II for every basis set. Obviously, this increases
the barrier height and decreases the steepness of the repulsive
potential wall at largeR. Besides, the absolute value of∆s
strongly depends on the basis set, the aug-cc sets being those
requiring the smallest overall correction. As for the relative
accuracy of the 3fCP-corrected PE curves, from Figure 6 one
can see that the curves are close to each other and that the
locations of the minima are much less dependent on the basis
set. An interesting point is the raising of the minimum at small
R relative to that at largeR and the shift of the latter to larger
R induced by the 3fCP correction on the PE curve from cc basis
sets. Both effects are not present in the correction of aug-cc PE
curves, and so they can be regarded as artifacts. As for the
barrier heights, the 3fCP correction has a large beneficial effect
on the values from the cc basis sets, which turn out to be closer
and larger by more than∼1 kcal/mol. The aug-cc barriers are
again close to each other and about 0.5 kcal/mol higher with
respect to the uncorrected values. Although introducing the
BSSE corrections improves the agreement between the two
different groups of results, the results still show marked
differences, especially in the barrier heights. This finding
indicates once more that the absence of diffuse functions can
introduce a strong bias when dealing with anionic systems, such
that even the 3fCP approach cannot fully account for this
absence. Conversely, the 3fCP correction is able to countervail
the different number ofú subsets, in contrast to the behavior
observed with H5O2

+. Hence, a 2D scan of the proton-transfer

Figure 5. Shape difference and comparison between the potential
energy curves for the [H2O‚‚‚H‚‚‚OH2]+ complex computed with four
basis sets. (Top) Uncorrected PE curves; (middle) 3fCP-corrected PE
curves; (bottom) shape differences.4, cc-pVDZ;2, cc-pVTZ;O, aug-
cc-pVDZ; b, aug-cc-pVTZ.

Figure 6. Shape difference and comparison between the potential
energy curves for the [H2N‚‚‚H‚‚‚NH2]- complex computed with four
basis sets. (Top) Uncorrected PE curves; (middle) 3fCP-corrected PE
curves; bottom, shape differences.4, cc-pVDZ; 2, cc-pVTZ; O, aug-
cc-pVDZ; b, aug-cc-pVTZ.
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PES for this complex could be carried out by employing the
aug-cc-pVDZ atomic basis set. From the dynamical point of
view, this complex seems to be the best candidate to study the
coupling between the proton motion along the N-N internuclear
axis and the N-N vibrational motion. Indeed, the high barrier
and its decrease upon a fragment approaching may force a
“corner cutting” on the propagated wave packet around the
barrier itself. The relative importance of this effect should
depend strongly on the overall topology of the computed PES
in the saddle point region.

The [H3N‚‚‚H‚‚‚NH3]+ Complex.Among the complexes we
studied in this work, this is the system that possess the largest
number of internal degrees of freedom for each of the two
fragments, i.e., 6. In Figure 7, we show the PE curve and∆s
computed using the four basis sets. Similarly to the N2H5

- case,
all of the four uncorrected PE curves show a double-well
interaction potential. Notwithstanding this similarity, the de-
pendency of both the location of the right minimum (i.e., large
R and proton bound to the right fragment) and the height of the
potential barrier on the quality of the basis set is large. The
position of the minimum spans the distance range 1.525-1.600
Å, and the height of the barrier varies from 0.41 to 0.96 kcal/
mol as an effect of the quality of the basis set (see Table 2).
This dependency is largely reduced by correcting the PE curve
for the BSSE by using eq 7, as clearly seen in Figure 7, so the
equilibrium distances differ by less than 0.025 Å, and the
barriers are all within the range of 0.12 kcal/mol. The shape
difference appears to be of type II for all the basis sets used in
this work, showing positive values in the region between the
two minima (hence increasing the barrier) and a negative sign
for R > 1.55 Å. Interestingly, the BB correction seems to
overestimate the 3fCP one by 0.1-0.2 kcal/mol in the region

between the two minima for all the basis sets. This effect is
obviously due to the deformation energy, and it is expected to
produce a barrier that is too large with respect to the CBS limit.
As to the relative accuracy of the four PE curve, our results
show that, if one is interested in having an accuracy of 0.1 kcal/
mol for the barrier height and of 0.02 Å on the geometry of the
minima after BSSE correction, all the basis sets seems to be
equally effective. For N2H5

-, raising of the minimum at small
R is observed, even if the effect is smaller in the present case.
However, this shows that augmented basis sets are mandatory
to study even this cationic system. Although the aug-cc-pVDZ
results slightly overestimate the barrier to proton transfer by
about 0.1 kcal/mol, we advise to consider its use for PE curve
production purposes since the aug-cc-pVTZ basis set is com-
putationally very expensive for a fully relaxed PES scan.

Conclusions

The most general conclusion to draw on the basis of the above
results is that the effects of basis set choice and of 3fCP
correction are strongly system dependent and therefore should
be studied separately for each system under consideration. The
topology of the PE curve, i.e., the number of maxima and
minima, is mainly determined by the system itself. Indeed, a
double-well potential is found with more basic fragments.
However, a case was found, namely [HO‚‚‚H‚‚‚OH]-, where
the topology strongly depends on the basis set. The choice of
the latter also affects the parameters quantitatively describing
the PE curve, that is, the location and relative energy of maxima
and minima. Larger effects are observed in the uncorrected PE
curves of systems comprising more basic fragments.

The difference between the BB and the 3fCP correction (i.e.,
the deformation energy) grows with the number of internal
degrees of freedom of the fragments, as expected. The 3fCP
correction does not affect the PE curve topology, but it may
affect the parameters in the sense that the differences among
parameters computed with different basis sets may be partially
or almost completely suppressed. It was most effective for the
H5O2

+, N2H5
-, and above all N2H7

+ systems but was much
less beneficial for H3O2

- and HF2
-. Therefore, larger differences

are corrected for when electronically less rigid fragments are
involved. Hence, a general trend can be delineated: the effect
of basis set incompleteness and the counteracting correction of
the BSSE follow the trend F< O < N.

Finally, we give some hints about the best-compromise basis
set for computing extensive PES. For N2H7

+ and N2H5
-, the

aug-cc-pVDZ set seems to be adequate if one is satisfied with
a 0.1 kcal/mol) 35 cm-1 accuracy. This basis set can also be
used with H3O2

- if an accuracy of 0.2 kcal/mol is acceptable;
otherwise, the much larger aug-cc-pVTZ is needed. Notwith-
standing its simplicity, the HF2- system apparently needs the
aug-cc-pVTZ set because the aug-cc-pVDZ-corrected energy
differs from the latter by more than 0.1 kcal/mol already at 0.05
Å from the minimum. Conversely, the cc-pVTZ basis set seems
to give the overall best accuracy/cost ratio for the H5O2

+ system
when supplemented by the 3fCP correction procedure, so we
suggest its use for scanning the potential energy surface of
protonated water clusters.
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